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Abstract-The results of a linear-stability analysis of the fully-developed flow in a heated vertical pipe 
are presented. They confirm the experimental observations that flow in a heated vertical pipe is 
supercritically unstable. The bifurcated new equilibrium laminar flow is likely to be a double spiral flow. 
Mixing induced by this spiral flow can cause a substantial increase in the heat-transfer rate and even 

delay transition to turbulence, as has been observed experimentally. 

1. INTRODUCTION 

HEAT TRANSFER in a circular pipe is a fundamental 
convection problem. Unfortunately, our under- 
standing of the physics of fluid flows and the associ- 
ated heat-transfer mechanisms is, in fact, incomplete 
and in many respects, erroneous. For example, most 
textbooks still describe a fully-developed flow in a 
heated pipe as a parallel flow, similar to an isothermal 
flow. In this case, the velocity and temperature distri- 
butions are functions of the radial coordinate only. 
Consequently, many design methods for thermal 
systems, which contain various kinds of straight tubes, 
have been developed solely on this simple, but, as will 
be shown below, erroneous assumption. A more 
surprising fact is that many research papers appearing 
in archival journals contain the same mistake. In this 
paper we will demonstrate that a flow in a heated 
vertical pipe is highly unstable; therefore, a parallel, 
fully-developed flow can hardly be expected in any 
engineering system. 

An isothermal flow in a straight pipe can be 
classified into three regions: entry, developing and 
fully-developed flows [l]. An entry flow consists of a 
thin viscous layer near the pipe wall and an almost 
inviscid core flow. After the viscous layer fills the 
entire cross section of the pipe and before the flow 
becomes independent of the axial distance, the flow 
is defined as developing. The typical characteristics 
of a fully-developed flow are: (1) the axial pressure 
gradient is constant and the pressure is uniform across 
the pipe, (2) the radial velocity component is zero and 
the flow is parallel and independent of the axial 
distance. In the other two regions, the flow cannot be 
analyzed with these simplifications. It is known that 
the entry flow occupies about 25% of the entry length; 
thus, the flow in a thermal system is likely to be a 
developing one. 

Flows in a heated straight pipe behave quite differ- 
ently from isothermal fldws. For a horizontal pipe, 
secondary flows are induced by the density strati- 

fication [2-91. Consequently, the criterion for flow 
transition and the heat transfer mechanism are com- 
pletely altered by the secondary motion. 

An extensive list of references for flows in a heated 
vertical pipe can be found in ref. [lo]. With few 
exceptions [11-143, most studies have adopted the 
assumption of laminar and/or parallel flow. Scheele 
and Hanratty [11] obtained an analytical solution 
for fully-developed flow in a heated vertical tube, and 
observed experimentally that the flow is stable in the 
entry region but highly unstable in the fully-developed 
region. They speculated that the flow goes through 
transition at rather low Reynolds number, but the 
flow, unlike other turbulent flows, consists of large- 
scale, regular and periodic motions. Similar flow 
patterns have been observed and are called nonlaminar 
by Kemeny and Somers [12] to distinguish them 
from turbulent patterns. The striking fact is that flows 
can become nonlaminar at Reynolds numbers as low 
as 30. They also found that the non-laminar heat 
transfer rate can be 30% larger than those in laminar 
flow. Unfortunately, they ignored these ‘unusual’ 
non-laminar data in deriving their Nusselt number 
correlations. Similar phenomenon and reversed-flow 
transition due to the mixing introduced by large-scale 
periodic, secondary flows have been observed by 
Steiner [ 133. Analytical considerations [ 143 suggest 
that the developing lengths corresponding to the entry 
and the developing flows in a heated vertical tube are 
shorter than those in an unheated tube. Steiner’s data 
have been successfully correlated in terms of the 
parameters suggested in ref. [14]. In this paper, the 
stability of a fully-developed upward flow in a heated 
vertical pipe (or a downward flow in a cooled tube) 
is studied. The results suggest that a heated flow in a 
vertical tube is extremely unstable (see Fig. 5) and 
that the instability is supercritical. Except for a narrow 
range of Reynolds numbers, the disturbed flow has a 
double-spiral structure. This agrees with the obser- 
vation of refs. [11-131 that the instability is super- 
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NOMENCLATURE 

a radius of the pipe T temperature 
C complex wave speed, c, + i ci u radial velocity 
D operator defined in equations (2b) and V azimuthal velocity 

(9a) w, w axial velocity 

Lg streamfunctions defined in equations z axial coordinate. 

(lOa)-(1Oc) 

&! gravitational acceleration Greek symbols 
Gr Grashof number, &a4/v2 u wave number in equation (7) 
J operator defined in equation (2a) cc thermal diffusivity 
L operator defined in equation (9b) B thermal expansion coefficient 
n azimuthal modes V kinematic viscosity 

P, p pressure density 
r radial coordinate : dimensionless temperature in 
Ra Rayleigh number, &ra4/vk equation (3a) 
Re Reynolds number r axial temperature gradient along 
t time the pipe wall. 

critical and a new, equilibrium, laminar and non- 
parallel flow exists after flow bifurcation. Moreover, 
it seems that some of the unstable flows observed by 
Scheele and Hanratty occurred in the developing 
region instead of in the fully-developed region, as 
speculated by them. 

A brief review of the stability of isothermal Hagen- 
Poiseuille flow is relevant to our study. The stability 
of this flow has been of continuing interest since 
Reynolds’ classic experiments. Theoretical and exper- 

imental studies [15-241 have shown that Hagen 
Poiseuille flow is stable for infinitesimal disturbance. 
Non-linear analyses [25-311 have, however, indicated 
that a subcritical instability is possible for finite- 
amplitude disturbances. A more relevant stability 
problem is the spiral Poiseuille flow between rotating 
cylinders [32-341. It has been found that the axial 
flow can enhance the Taylor instability induced by 
the rotating cylinders, and higher azimuthal modes 
become unstable when the axial Reynolds number 
increases. This differs from the flow instability in a 
heated vertical tube in which n = 1 (see equation (7)) 
is the dominant azimuthal mode. The two problems, 
however, share many similarities: (1) their instabilities 
are supercritical and new equilibrium laminar flows 
exist after flow bifurcations; and (2) the fully-developed 
flow is less stable than the corresponding developing 

flow. 
A linear stability analysis is performed in the 

following section for an upward fully-developed flow 
in a heated vertical pipe (which is identical to the 
downward flow in a cooled vertical pipe). One of the 
reasons for studying the stability ofthe fully-developed 
flow is that stability problems for a parallel flow 
are relatively simple; in contrast, our knowledge of 
instability analysis for a non-parallel flow is incom- 

plete today [35]. Upstream influences induced by 
low-frequency unstable waves must be included in the 
analysis in order to have a complete theory for non- 
parallel flows. Three-dimensional computations are 
probably required to consider the full elliptical nature 
of the stability equations and their interaction with 
the mean-flow equations. Further research is needed 
before a satisfactory theorem becomes available. Our 
results, presented in Section 4, for a fully-developed 
flow can, however, elucidate some of the physics of 
this complex problem, and the conclusion in Section 
5, we believe, can certainly be extended to the more 
important case of a developing flow. 

2. FORMULATION 

For an incompressible flow, the dimensionless Nav- 
ier-Stokes and energy equations, in terms of cylindr- 
ical polar coordinates (r, +, z), are 

(14 

* G2 J#l $+ Jfi-I= -+A 
,. 

D;,_f_??! 
r2 r2 a* (lb) 

!!+JG_!f= 1as 
r r a* 

(14 

ati 
at + J,$, -!k_!5+&2@ 

az Re Re ’ (14 
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and 

a6 
z+J6- (le) 

where 

J=&+!d+,& 

ar ra* az 

and 

D:=g+;$+LL+E. 
r2 atj2 az2 

(2b) 

The coordinates are nondimensionalized by the radius 
of the cylinder, a, the velocities by the mean axial 
velocity, d, the pressure by pW2, and the time by a/W. 
The temperature distribution along the pipe wall is 
assumed to be linear with a constant axial gradient, 
t; thus 

T = T, - (ra Re Pr)8 

T, = To + 7az 

(3) 

where To is the upstream reference temperature. The 
parameters are Reynolds number Re = W a/v, Prandtl 
number Pr = e/v, and Rayleigh number Ra = 
@ra4/v& where g is the gravitational acceleration, v 
the kinematic viscosity, /? the thermal expansion 
coefficient, and a the coefficient of thermal diffusivity. 
The surface temperature is zero because of equation 

(3). 

2.1. Mean flow 
Since we wish to study the stability of an upward, 

fully-developed flow in a heated circular pipe, the 
dependent variables in equations (la)-(le) are split 
into two parts: mean flow and disturbance. If the 
classical assumption of fully-developed flow is applied 
to equations (la)-(le), it can be shown that the 
mean flow is independent of the axial and azimuthal 
coordinates. The governing equations of the mean 
flow are, with mean-flow quantities denoted by capital 
letters 

D2W= Reg + RaO (44 

D2@ = -w, W) 

the axial pressure gradient can be determined by the 
requirement of global mass conservation 

s 1 

r Wdr = l/2. (4c) 
0 

The solutions of equations (4a)-(4c) satisfying the 
no-slip conditions on the pipe wall (r = l), and 

t 
3 
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r- 

FIG. 1. Mean-flow velocity profile. 

bounded along the pipe center can be found from ref. 
[36]. They are 

W = cl ber (r Ra’j4) + c2 bei (r Ra’14) 

- Ra”’ 0 = c,[bei (r Ra’j4) - bei (Ra1’4)] 

- c,[ber (r Ra’j4) - ber (Ra1’4)] 

with 

(54 

(5b) 

cl = 0.5Ra1/4 bei (Ra1’4)/ [ber’(Ra1/4) ber (Ra’14) 

+ ber’(Ra1’4)bei(Ra1’4)] 

(5c) 

and 

c2 = -cl ber(Ra1/4)/bei(Ra1’4) (5d) 

where 

(54 

and Jo is the first kind Bessel function of order zero. 
The mean-flow velocity profiles for Ra = 0, 100, 

175, 200 and 350 are plotted in Fig. 1. Near the 
pipe wall, the fluid flows faster due to heating. 
Consequently, the fluid near the center of the pipe is 
slowed in order to satisfy mass conservation. It is 
clear that the velocity profile contains an inflection 
point and is likely to be unstable. The distributions 
of mean temperature are given in Fig. 2 for Ra = 0, 
100 and 175, respectively. 

Due to the different nondimensionalization of the 
equations in this paper and those of Hanratty et al. 
[36], the relation between the governing parameters 
is needed in order to compare results: (Gr/Re)HRK in 
ref. [36] equals Ra . O(0) in this paper. The centerline 
temperature O(0) is plotted in Fig. 3 as a function of 
Ra and the relation between (Gr/Reh,, and Ra is 
provided in Fig. 4. 
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FIG. 2. Mean temperature distribution. 
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FIG. 3. Centerline temperature. 

-0 100 200 300 400 500 

Ro - 

FIG. 4. Relation of Gr/Re in ref. [36] with Ra of this paper. 

2.2. Disturbance 
The linear equations governing the disturbances 

can be obtained by subtracting the mean-flow equa- 
tions, equations (4a)-(4c), from the full equations, 

equations (la)-(le), and neglecting the small non- 
linear terms. They are 

aii u i ati aw 
g+;+--+z=o 

r a* (64 

au ap --++-_-+& 
) 

(6’4 

aB +wB+u@'- * 
at az a=&%& (64 

It is easy to check that equations (4) and (6) are 
invariant under the transformation (W, ti, 0, 8, z) -+ 
(- W, --W, - 0, - 8, -z). Thus, the mean flow as 
well as the stability characteristics of a heated upward 
flow are identical to those of a cooled downward 
flow. 

Equations (6a)-(6e) can be reduced to a set of 
ordinary differential equations if the disturbance 
quantities are represented in a normal-mode form, 
such as 

+ = Nr)e 
i[a(r -et) + n$] 

(7) 

where a is the wave number, n the integer azimuthal 
wave number, and c the complex wave speed. Substi- 
tution of equation (7) into equations (6a)-(6e) yields 

(>’ D+f u+:v+iaw=O (84 

ia(W-c)u+Dp-_(Lu-$v)=O (8b) 

ia(W-c)u+Fp-&(Lv+Fu)=O (8~) 

ia(W- c)w + uDW+ ~t3 

ia(W-c)B+uD@-& (w+LB+$)=o 

where 

D=$ 

(84 

Pa) 
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and 

L = 5, 
i > 

I) + ; - (a2 + 2)/P. fwl 

Equations @a)-(8e) can be reduced to three equations 
by eliminating p among equations (gb)-(8d) and by 
introducing two stream functions, f and g, which are 
defined by 

w = f’(r) + f/r (l@4 

t’ = g’(r) (lObI 

U-- -iLuf -Fg (104 

where the prime denotes di~eren~iation with respect 
to r, Equations @a)-(8e), then, become 

f(“) -f- 2f “l/r - [(n3 + 3)/r + 2cr2 + i a Re WJf” 

+ [(n’ + 3]jr2 - 2a2 - i TV Re mf’/r 

-I- [(3n2 - 3)/r4 + a2(n2 + 2)/r2 + ff4 

+ ia&+D2 - D/r + l/r2 + ffZ)W-Jf 

- nug”/r - n(ajr - i Re W)g’Jr + n[anzfr’ + a3 

f iRe(D2 - B/r + a2fWJg/r - RUB 

= -iaRae[(D2 -I- D/r + l/r2 + a2 + nag/r] (l1af 

gc4) + 2g”‘/r - [(2nZ + 1)/r’ + a2 + i a Re Wig” 

f [(2n2 + l)/r3 - a2/r 

- i a Re(D + l/r)WJg’ + nZ[(n2 - 4)/r4 

C (a2 + i a Re W)/r2]g - n ar/r 

+ nay/r2 + nu[(n2 - 1)/G 

-t (a” + i a Re W)] f/r 

= icr Rec[naf/r - (0’ -I- D/r - n2/r)gJ (lib) 

~i~~r-(n2~r2~u~+iaR~Fr~e 

+ (Lt + l/r)f+ RePrWfiaff ing/r) 

= -iaRePrc& (1 ICI 

The required boundary conditions OII the pipe wall 
reflect the no-slip and no-penetration conditions, and 
the zero surface temperature. They are 

f’ + f = g’ =ccf+ng=@=O atr= 1. (12a) 

One more required condition can be obtained by 
eliminating p between equations (8~) and (8d); the 
result is 

(r(D3 + DZ)g - nfD3 + 202 - D 4 l)f = 0. 

(12bi 

The conditions at r = 0 are more intriguing and 
purely kinematic [37]. They must be considered 
separately for ini = 0, 1 and tnf b 2. 

(i) n = 0: the disturbance is rotationally symmetric 

and two kinds of normal modes exist (meridional 
and torsional modes). The required conditions are 
u=y=$=@=O,or 

f =f” = g’ = B’ = 0 atr=O (13a) 

where g is set to zero at r = 0 in order to uniquely 
determine it, 

(ii) f~/ = 1: the distnrban~ are two planes~met~~ 
spiral flows. In this case, the radial and the azimuthal 
velocities are related; therefore, the conditions are 
u+i0=w=f?=O,or 

f=f=g=g”=t?=O atr=O. (13b) 

(iii) In/ > 2: the normal mode is 2n spiral flows. The 
conditions are u = u = w = 8 = 0, or 

f =f'=g=d=O=o atr=fJ. (13c) 

Equations (1 la)-( 1 lc) and boundary conditions (12) 
and (13) form an eigenvalue problem. The instability 
boundary of the flow in the (Re, Ra) space is deter- 
mined by the fact that the imaginary part of the 
complex wave speed Ci equals zero. This also forms a 
minimax problem with Ci = 0 when Re and Ra are 
local minima for various wave numbers a and n. A 
large number of computations is required in order to 
determine the flow instability boundary. 

3. METHOD OF SOLUTION 

A pseudo-spectral Chebyshev method [38] is used 
to discretize equations (1 la)-(1 lc) and to incorporate 
boundary conditions (12) and (13). The colio~ation 
points are selected to be the extrema of Nth order 
Chebyshev polynomials in order to minimize the 
truncation error. The results have been compared 
with those obtained for grids of equal distance. The 
difference between the two grid systems is very slight. 
The eigenvalues of the matrix produced by the pseudo- 
spectral method are determined by a compiex QR 
algorithm [39]. The method is very stable and the 
required computer time is moderate. The advantages 
of the method are that the numerical results provide 
a global instability map and no guesses are required. 
This feature is critical to a new flow instability 
problem, such as the one studied in this paper, for 
which the parameter domain for instability is not 
known a priori. 

Computations have been carried out to check the 
accuracy of the numerical method by comparison 
with the previous published results for an isothermal 
tube flow [23]. Our results with 51 terms agree with 
those of ref. [23] to the third decimal point. It is 
worthwhile to note that additional. unstable modes 
may occur due to the existence of the energy equation. 
The energy equation is removed from our compu- 
tation when the results are compared with ref. [23]. 
Further comparison of our numerical results with 
various N shows that the results for 51 terms atso 
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FIG. 5. Flow instability boundary in (Re, Ra) plane. 

agrees with those for 71 or 91 terms to the third 
decimal point. The results discussed below are prod- 
uced by Chebyshev polynomials with 51 terms. 

4. RESULTS AND DISCUSSION 

The flow instability boundaries for n = 0, 1 and 2 
are plotted in Fig. 5. It is clear that n = 1 is the most 
unstable mode except in a very small region (denoted 
by AB) where n = 0 is the most unstable mode. This 
explains why the observed unstable flow pattern 
[ 11,361 is a double spiral flow. It is known that pipe 
flow is stable for infinitesimal disturbances. On the 
other hand a heated tube flow is highly unstable. The 
boundary DAB in Fig. 5 indicates that a flow can 
become unstable for Ra > 75 and Re > 40, which 
means that a very slow flow at a rather mild heating 
condition is already unstable. The boundary ABC is 
due to the shear instability of a mean-flow velocity 
profile modified slightly by heating. The boundary 
DA is due to thermal instability. The density of the 
fluid in a heated tube without motion is stably 
stratified in the vertical direction. A slow flow can 
carry denser fluid upward into the region of lighter 
fluid. This is why the flow becomes unstable at 
extremely slow speeds at a high heating condition. 
The boundary between the shear instability and the 
thermal instability is not clear for our problem. This 
differs from the instability of a thermally stratified 
horizontal plane Poiseuille flow [40] in which a 
clear boundary exists between the shear and thermal 
instabilities in the parameter plane (Ra,Re). We will 
further probe this point later on by investigating the 
distribution of unstable modes in the (a, Ra) parameter 
plane for a fixed Re. 

The instability boundary ABC was observed by 
Scheele and Hanratty [ll]. Within the range of Re 
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FIG. 6. Speed of shear instability wave. 

in Fig. 5, the experimental results indicate that the 
flow is unstable when Ra > 140 which is larger than 
the value, Ra > 80, predicted by our linear stability 
analysis. The discrepancy can be attributed to two 
facts. First, the instability cannot be observed until 
its amplitude reaches an observable magnitude. 
Scheele and Hanratty’s experiment was performed 
more than a quarter of a century ago. None of the 
modem electronic devices were available at that time 
to help them to accurately detect the onset of the flow 
instability. Second, the flow instability detected by 
them is very likely in the region of a developing flow 
whose mean flow profile can differ substantially 
from the fully-developed velocity profile used in this 
analysis. Since the developing flow is more stable than 
a fully-developed flow, the observed critical Rayleigh 
number is naturally larger than the prediction for a 
fully-developed flow. 

The wave speed (the real part of c, c,) along ABC 
of Fig. 5 is plotted as a function of Re in Fig. 6. The 
wave speed increases with Re. Comparing the wave 
speed with the mean-flow velocity shows that two 
critical layers exist. This is probably a typical property 
of a thermally disturbed flow. The wave number is 
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FIG. 7. Speed of thermal instability wave. 
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FIG. 8. Flow instability map in (a,Ra) plane for n = 0 and 
Re = 300. 

insensitive to the variation of Re. For Re > 100, a N 3 
and for Re = 70, u drops to 2. This indicates that the 
wavelength is about the diameter of the pipe for a 
shear instability. 

For a thermal instability (along AD of Fig. 5), the 
wave speed is plotted as a function of Ra in Fig. 7. 
The wave speed decreases when heating increases. A 
maximum occurrence at Re cu 130 is likely in the 
region where the flow instability shifts from the 
thermally triggered one to the shear instability. The 
wave number along AD is about 1.75 and is not 
sensitive to the variation of Ra, either. This means 
that the waveIen~h of thermal instability is always 
1.7 times longer than that of the shear instabiIity 
wave. 

The irregular shape of the instability boundary for 
n = 0 in Fig. 5 induces our interest to probe the 
detailed distribution of unstable flow modes. For 
Re = 300, a stable flow region exists between 
150 & Ra < 190. A flow instability map in the (a, Ra) 
plane is given in Fig. 8. The solid lines mark the 
unstable region for discrete wave numbers. It clearly 
shows that two unstable flow regions exist. The one 
for small Ra is closed and is due to the shear 

FIG. 9. Flow instability map in (a, Ra) plane for n = 0 and 
Re=600 

-0.41 I I I I 

0 0.2 0.4 0.6 0.9 IO 

r-e 

FIG. IO. Eigenfunctions of w and 0 for n = 0, 01 = 0.1, 
Re = 6C0, Ra = 84.06. 

instability; the one for large Ra is open and is due to 
the thermal instability. In between these two regions, 
the flow is stable. This stable flow region disappears 
when Re increases beyond Re = 500. A typical case 
of Re = 600 is selected to study the reason why this 
stable flow region disappears at large Re. In Fig. 9, a 
third unstable region appears which corresponds to 
the disappearance of the middle stable flow region 
when Re > 500. In this region, the flow becomes 
unstable due to the interaction of thermal and shear 
instabilities. 

For n = 0 and Re = 600, the eigenfunctions for w 
and 6 are plotted in Figs. 10-12 for the three least 
stable modes. They seem to suggest that there are two 
parallel travelling waves of ‘donut’ shape that exist 
for Ra = 84.06 and a = 0.1. Similar eigenfunctions 
are observed for the thermally unstable region where 
Ra = 191.91 and tl = 0.3. In the interaction region, 
Ra = 150.82 and a = 2.5, the eigenfunction is rather 
flat in most regions of the cross section of the pipe, 
and drastic changes occur only near the pipe wall. A 
comparison of eigenfunctions for various cases indi- 
cate that the eigenfunctions are insensitive to changes 
in a and Re and are functions of Ra only. 

Interesting information can be revealed by follow- 
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FIG. 11. Eigenfunctions of w and 0 for n = 0, a = 0.3, 
Re = 600, Ra = 191.91. 
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FIG. 13. Evolution of c, (wave speed) and ci (amplification 
factor) with respect to Ra. 
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FIG. 12. Eigenfunctions of w and 0 for n = 0, a = 2.5, 
Re = 600, Ra = 150.82. 

ing the evolution of the flow development with 
increasing Ra. The wave speed, c,, and the wave 
amplification factor, ci, for n = 0, CL = 1 and Re = 100 
are plotted in Fig. 13. Modes 1 and 2 are thermal 
modes, 3 is a meridional mode, and 4 is a torsional 
mode. The thermal mode represents the instability 
induced by the onset of a temperature instability, the 
meridional mode is due to the instability of the axial 
and radial velocities, and the torsional mode is due 
to the azimuthal velocity. It is interesting to note that 
the flow instability, for this particular case, is first 
triggered by the unstable temperature distribution in 
90 I Ra I 144. The eigenfunctions show that, once 
the temperature distribution becomes unstable, w 
and u are also unstable, but v remains zero. The 
disturbance is axisymmetric. For Ra > 210, the most 
unstable mode is meridional; the torsional mode is 
always stable. 

5. CONCLUSION 

The linear stability analysis indicates that an 
upward flow in a heated vertical pipe (or a downward 
flow in a cooled pipe) is unstable. The predicted 
critical values of Ra and Re agree reasonably well 
with experimental observation. This suggests that 
idealized fully-developed, forced-convection flows 
and/or mixed-convection flows can only exist with 
minimum heating (or cooling). The heat-transfer data, 
previously analytically predicted or experimentally 
correlated, without considering flow instability, which 
are widely cited in textbooks, should be used with 
caution. The same conclusion can be extended to 
developing flows as well. We also believe that the 
instability associated with the double spiral flow in a 
heated pipe is supercritical. A new equilibrium laminar 
state can exist within the unstable region predicted 
by the linear stability analysis. Since the wavelength 
is of the order of the pipe diameter this verifies the 
experimental observation that the disturbance size is 
large. The mixing introduced by the spiral flow can 
certainly delay the mechanism of flow transition. The 
criteria of flow transition based on an isothermal flow 
can be misleading. The difference between a heated 
and an unheated tube flow is by no means small. 
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UN ECOULEMENT NON ISOTHERME PLEINEMENT ETABLI EST-IL POSSIBLE DANS 
UN TUBE VERTICAL? 

R&sum&On prtsente les rt%ultats d’une analyse de stabilitt linkaire de l’kcoulement pleinement etabli 
dans un tube chauff& vertical. 11s confirment les observations exptrimentales que I’tcoulement dans un 
tube vertical chauffi est instable de faGon supercritique. Le nouvel tcoulement laminaire stable bifurqut 
est semblable B celui d’une double spirale. Le melange induit par ce mouvement peut provoquer un 
accroissement sensible du transfert de chaleur et, comme il a ttt observt expirimentalement, retarder la 

transition $ la turbulence. 



L. s. YAO 

IS-f EINE VOLLAUSGEBILDETE NICHTISOTHERME STRdMUNG 
IN EINEM SENKRECHTEN ROHR MC)GLICH? 

Zusammenfassung-Die Ergebnisse einer linearen Stabilitatsanalyse einer vollausgebildeten Striimung in 
einem beheizten vertikalen Rohr werden vorgestellt. Sie untermauern die experimentellen Beobachtungen, 
da13 die Stromung in einem beheizten vertikalen Rohr iiberkritisch instabil ist. Die gespaltene neue, sich 
im Gleichgewicht befindende, laminare Stromung ist wahrscheinlich eine zweifache Spiralstriimung. Durch 
diese Spiralstromung verursachte Vermischungen konnen ein betrachtliches Anwachsen des iibertragenen 
Warmestroms und sogar einen verzogerten tibergang zur Turbulenz hervorrufen, wie experimentell beo- 

bachtet wurde. 

B03MOXHO JIM HOJIHOCTbH) PA3BMTOE M HEM30TEPMMrIECKOE TErIEHME B 
BEPTHKAJIbHOti TPYEE? 

hlOTfllUlS--np&iBCnCHbI pe3yJlbTaTbl aHaJIA3a B JUfHeiiHOM npe6nememiw yCTOhiBOCTI( nO,THOCTbK) 

pa3BHTOrO TeYeHAII B BCpTHKanbHOii HaI'peBaeMOti rpy6e. OHI( nOnTBepWlaIOT TOT 3KCnepEiMeHTaJIb- 

HbIi-4 @KT, '#TO TeWHHe B HarpeTOti BepTHKanbHOii rpy6e KBnlleTCR CBepXKpLlTWIeCKH HCyCTOiiWBbIM. 

Honoe yCTOiiWBOe JaMHHapHOe TCYeHHe, BepORTHO, IIB."lCTCII nBOfiHbIM CnHpa_"bHbIM Te'EHlleM. CM’S 

LUeHkfC, HHnyWfpOBaHHOe 3TAM CnApanbHbIM TNeHHeM, MOmCT BbI3BaTb CyIUeCTBeHHOe yBenH%HHe 

RHTeHCABHOCTA TeIIJIOO6MeHa A name, KaK Ha6nIonanocb B 3KcnepeMeHTax,3anep2cKy nepexona K Typ- 

6yneHTHOMypeTAMy. 


